

FOUNDATION REINFORCEMENT AND BACKFILL DETAIL

(5) CONCRETE CAST WITHIN A CORRUGATED METAL PIPE STAY-IN-PLACE FORM **ALTERNATE #2**

CONCRETE CAST DIRECTLY AGAINST UNDISTURBED EARTH, DRILLED SHAFT **ALTERNATE #1**

- (1) CONDUIT SIZE AND QUANTITY AS SHOWN IN THE CONTRACT; CAP BOTH ENDS.
- CLAMP CONDUCTOR TO STEEL REINFORCING WITH LISTED CONNECTOR SUITABLE FOR USE EMBEDDED IN CONCRETE.
- 3 PAPER OR CARDBOARD FORM SHALL NOT STAY-IN-PLACE
- 4 SEE NOTE 4

ALTERNATE # 1 DRILLED SHAFT-TYPE CONSTRUCTION - DEPTH "D" FOR LATERAL BEARING PRESSURE = 2500 PSF & \emptyset = 34°, 1500 PSF & \emptyset = 28°, 1000 PSF & \emptyset = 26°

	GROUND SLOPE = 3H : 1V TO 2H : 1V																	
ALLOWABLE LATERAL BEARING PRESSURE	FOUNDATION TYPE	POLE C	LASS - R	RESULTA	NT HORI	ZONTAL	TENSIO	N (LBS)	ALLOWABLE LATERAL BEARING PRESSURE	FOUNDATION TYPE	POLE CLASS - RESULTANT HORIZONTAL TENSION (LBS)							
		1900	2700	3700	4800	5600	6300	7200			1900	2700	3700	4800	5600	6300	7200	
1000 PSF	3' - 0" ROUND	11' - 0"	13' - 0"	15' - 0"	16' - 0"	18' - 0"	19' - 0"	20' - 0"	1000 PSF	3' - 0" ROUND	SPECIAL FOUNDATION TYPE							
	3' - 0" SQUARE	11' - 0"	13' - 0"	15' - 0"	16' - 0"	18' - 0"	19' - 0"	20' - 0"		3' - 0" SQUARE	SPECIAL FOUNDATION TYPE							
	4' - 0" ROUND	10' - 0"	11' - 0"	13' - 0"	15' - 0"	15' - 0"	16' - 0"	18' - 0"		4' - 0" ROUND	SPECIAL FOUNDATION TYPE							
1500 PSF	3' - 0" ROUND	9' - 0"	11' - 0"	12' - 0"	14' - 0"	15' - 0"	15' - 0"	16' - 0"	1500 PSF	3' - 0" ROUND	10' - 0"	12' - 0"	13' - 0"	15' - 0"	16' - 0"	16' - 0"	17' - 0"	
	3' - 0" SQUARE	9' - 0"	11' - 0"	12' - 0"	14' - 0"	15' - 0"	15' - 0"	16' - 0"		3' - 0" SQUARE	10' - 0"	12' - 0"	13' - 0"	15' - 0"	16' - 0"	16' - 0"	17' - 0"	
	4' - 0" ROUND	8' - 0"	9' - 0"	10' - 0"	12' - 0"	13' - 0"	13' - 0"	14' - 0"		4' - 0" ROUND	9' - 0"	10' - 0"	11' - 0"	13' - 0"	14' - 0"	14' - 0"	15' - 0"	
2500 PSF OR GREATER	3' - 0" ROUND	7' - 0"	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"	2500 PSF OR GREATER	3' - 0" ROUND	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"	14' - 0"	
	3' - 0" SQUARE	7' - 0"	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"		3' - 0" SQUARE	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"	14' - 0"	
	4' - 0" ROUND	6' - 0"	7' - 0"	8' - 0"	9' - 0"	10' - 0"	10' - 0"	11' - 0"		4' - 0" ROUND	7' - 0"	8' - 0"	9' - 0"	10' - 0"	11' - 0"	11' - 0"	12' - 0"	

ALTERNATE # 2 CORRUGATED METAL PIPE TYPE CONSTRUCTION - DEPTH "D" FOR LATERAL BEARING PRESSURE = 2500 PSF & \emptyset = 23°, 1500 PSF & \emptyset = 18°, 1000 PSF & \emptyset = 17°

	GROUND SLOPE = 3H : 1V TO 2H : 1V																
ALLOWABLE LATERAL BEARING PRESSURE	FOUNDATION TYPE	POLE C	LASS - F	RESULTA	NT HOR	IZONTAL	TENSIO	N (LBS)	ALLOWABLE LATERAL BEARING PRESSURE	FOUNDATION TYPE	POLE CLASS - RESULTANT HORIZONTAL TENSION (LBS)						
		1900	2700	3700	4800	5600	6300	7200			1900	2700	3700	4800	5600	6300	7200
1000 PSF	3' - 0" ROUND	11' - 0"	13' - 0"	15' - 0"	16' - 0"	18' - 0"	19' - 0"	20' - 0"	1000 PSF	3' - 0" ROUND	SPECIAL FOUNDATION TYPE						
	4' - 0" ROUND	10' - 0"	11' - 0"	13' - 0"	15' - 0"	15' - 0"	16' - 0"	18' - 0"	1000 P3F	4' - 0" ROUND	SPECIAL FOUNDATION TYPE						
1500 PSF	3' - 0" ROUND	9' - 0"	11' - 0"	12' - 0"	14' - 0"	15' - 0"	15' - 0"	16' - 0"	1500 PSF	3' - 0" ROUND	10' - 0"	12' - 0"	13' - 0"	15' - 0"	16' - 0"	16' - 0"	17' - 0"
	4' - 0" ROUND	8' - 0"	9' - 0"	10' - 0"	12' - 0"	13' - 0"	13' - 0"	14' - 0"		4' - 0" ROUND	9' - 0"	10' - 0"	11' - 0"	13' - 0"	14' - 0"	14' - 0"	15' - 0"
2500 PSF OR GREATER	3' - 0" ROUND	7' - 0"	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"	2000 F 3 F	3' - 0" ROUND	8' - 0"	9' - 0"	10' - 0"	11' - 0"	12' - 0"	13' - 0"	14' - 0"
	4' - 0" ROUND	6' - 0"	7' - 0"	8' - 0"	9' - 0"	10' - 0"	10' - 0"	11' - 0"		4' - 0" ROUND	7' - 0"	8' - 0"	9' - 0"	10' - 0"	11' - 0"	11' - 0"	12' - 0"

ALTERNATE #2 - CONSTRUCTION METHOD METAL (SUBSURFACE) FORM REQUIRED

NOTES

of 16' - 0".

removed.

the Media Filter Drain.

1. This structure has been designed according to

the Fifth Edition 2009 AASHTO Standard

50 years, and Fatigue Category III.

Specifications for Structural Supports for Highway

Signs, Luminaires, and Traffic Signals: Basic wind

velocity 90 mph, Design Life/Recurrence Interval

2. Foundations are designed for Type IV and V Strain

3. Foundations not within the parameters of this

standard require Special Design. Contact the

4. Where a foundation is constructed within a Media

Filter Drain, the foundation depth shown in the

5. The top 2 feet of the foundation shall use a smooth

form (such as paper or cardboard). After the

concrete has cured, this entire form shall be

7. Install Signal Foundation Identification Tag. See

6. See Standard Plan J-27.15 for Strain Pole

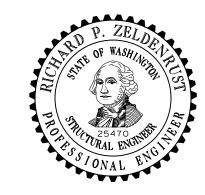
Standards Type IV and V details.

Standard Plan J-26.15 for details.

Contract Plans shall be increased by the depth of

Pole Standards with a maximum mast arm length

WSDOT Bridge and Structures Office through the Engineer for Special Foundation Designs.


When the existing soil will not retain a vertical face, over-excavate the foundation area and install a 36" or 48" (in) diameter corrugated metal (pipe) form. The top of the corrugated metal form shall terminate

1 foot below final grade. Continue forming to full height using a paper or cardboard form to achieve a smooth finish on final exposed cement concrete. Support the form as necessary to remain plumb.

Place the concrete foundation.

After concrete has cured, remove the entire paper or cardboard form portion.

① Shoring or Extra Excavation as required. Excavated area shall be be backfilled with Controlled-Density Fill (CDF), or with soil in accordance with **Standard Specification Section** 8-20.3(2) and Compaction Method 1 of Standard Specification Section 2-09.3(1)E.

TYPE IV AND V STRAIN **POLE TRAFFIC SIGNAL FOUNDATION** STANDARD PLAN J-27.10-01

SHEET 1 OF 1 SHEET

APPROVED FOR PUBLICATION

STATE DESIGN ENGINEER

Washington State Department of Transportation